U. S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION BUREAU OF PUBLIC ROADS Washington, D. C.

HYDRAULIC ANALYSIS OF PIPE-ARCH CULVERTS

(BPR PROGRAM HY-2)

Program developed by Engineering Systems Division Office of Research and Development In cooperation with Hydraulic Branch - Bridge Division Office of Engineering and Operations

> Revised May 1969

> > - i -

REVISION RECORD

REVISION

DESCRIPTION

February 1964	First printing
November 1965	Second printing
January 1968	Third printing - (revised)
March 1969	Fourth printing
May 1969	Fifth printing - (revised) Substituted a mathematical routine to compute areas and wetted perimeters in place of a polynomial equation with constants. Increased number of avail- able pipes from 16 to 61, to include 31", 18" and variable corner radii.

- ii -

ABSTRACT

This program is used for the hydraulic analysis of pipe-arch culverts. The program selects, from a table of pipe-arch culverts, the culverts which satisfy the hydrologic data and site conditions for inlet control and outlet control. The output includes: number of pipes, span, rise, headwater, and outlet velocities. Outlet control calculations make use of backwater calculations, whenever necessary, to compute headwater.

SPECIAL NOTICE

The initial version of the computer program "Hydraulic Analysis of Pipe-Arch Culverts" HY-2, was limited to the analysis of eight riveted and eight structural plate pipe-arch culverts. These sizes used 18" and smaller corner radii. The program necessitated the internal storing of precalculated constants utilized in equations for computing the area and wetted perimeter for the available pipearch culverts.

Subsequent to May 1969, the HY-2 program was revised to include sixty-one pipe-arch culverts, both riveted and structural plate having 31", 18" and smaller corner radii. A mathematical routine to compute the area and perimeter has been incorporated in the program, thus eliminating the need for constants for each pipe size.

- iii -

TABLE OF CONTENTS

	PAGE
REVISION RECORD	ii
ABSTRACT	iii
SPECIAL NOTICE	iii
STATEMENT OF THE PROBLEM	l
METHOD OF FUNCTIONING OF PROGRAM	2
MATHEMATICAL EQUATIONS	5
INPUT DATA	11
OUTPUT DATA	13
TABLE OF PIPE-ARCH CULVERTS	15
CULVERT CODE TABLE	16
CONSTANTS AND COEFFICIENTS	17
INPUT DATA FORM	18
DEFINITION OF TERMS	20
PROGRAM LISTING	26
EXAMPLE PROBLEMS	40

- iv -

STATEMENT OF THE PROBLEM

Hydraulic analysis of pipe-arch culverts is an extension of the method presented in BPR HY-1, "Hydraulic Analysis of Circular Culverts."

The rapidity with which the electronic computer performs calculations makes its use advantageous for selecting culvert sizes on highway projects having a number of drainage installations or for checking culvert sizes in the review of drainage plans. An added advantage of the program is the computation of headwater required, for the culverts selected, to pass floods other than the design flood.

This program is based on the principles discussed in Hydraulic Engineering Circular No. $5 \frac{1}{2}$, "Hydraulic Charts for the Selection of Highway Culverts." The nomographs used in Hydraulic Engineering Circular No. 5 are replaced by mathematical equations in the computer program. In addition, a backwater computation is incorporated for the solution of part-full outlet control problems.

1/ "Hydraulic Charts for the Selection of Highway Culverts" Hydraulic Engineering Circular No. 5, by L. A. Herr, U. S. Department of Commerce, Bureau of Public Roads, 1961

- 1 -

The functioning of the program can be separated into two parts; (1) inlet control calculations and (2) outlet control calculations. Each part will be discussed separately, but in the program these parts are interconnected in order to avoid duplication of computer instructions.

Inlet-Control

The computer begins inlet-control calculations by calculating the approximate cross-sectional area required. This is done by equation (1), page 5. This area is compared with the total cross-sectional areas of the various pipe-arches listed in Table 1, pages 15 and 16. The area table is searched until a minimum-sized pipe-arch is found that has a total area equal to or greater than the approximated area. This size of pipearch then becomes the first trial size for use in making inlet-control computations. If the rise (vertical dimension) of the trial-size pipe is greater than the allowable headwater, the number of pipes is incremented by one and the discharge is changed to an adjusted discharge (QADJ) by dividing the number of pipes into the design discharge. Using the adjusted discharge, a new size of pipe-arch is selected from the table in the same manner as described above. Again, the rise of the newly selected pipe-arch is compared to the allowable headwater. The above procedure continues until a pipe-arch with a rise less than the allowable headwater is found, then inlet control calculations are performed.

Using the selected pipe-arch as the first trial size, the headwater is calculated by equation (2) and is compared to the allowable headwater. When the calculated headwater is equal to or less than the allowable headwater, the next smaller size in the table of pipe-arches is selected as the next trial size. However, if the headwater for the first trial size is greater than the allowable headwater, the next larger size in the table of pipe-arches is selected as the next trial size. When it is necessary to select a larger size, a check is made to be sure that the rise of the pipe-arch does not become greater than the allowable headwater. If the rise is greater than the allowable headwater, then the number of pipe-arches is incremented by one, the discharge is adjusted by the method previously described and the calculations for inlet control are started again. When this is the case, the first size selected is discarded and all inlet-control answers will be for multiple culverts.

By testing counters, the program makes a decision whether two acceptable sizes have been selected. The two acceptable selections are: (1) a pipe-arch with headwater equal to or less than the allowable headwater and (2) the next size of pipe-arch with headwater greater than the allowable headwater. The rise of all pipe-arches selected is always equal to or less than the allowable headwater.

After two pipe-arch sizes have been selected for inlet control, the program calculates outlet velocities for each selection. In order to calculate the outlet velocity it is necessary to calculate the normal depth of flow. The normal depth is calculated by an iterative method using equation (3). The iterative calculations start by using the full pipe cross-section and the depth is decremented until equation (3) is satisfied. A mathematical routine for computation of area has been incorporated into the program in place of a polynomial equation with constants. When equation (3) is satisfied, the depth used is normal depth. The area that was calculated for normal depth is divided into the discharge to find the outlet velocity.

When the velocities have been calculated and the inlet-control results printed, the program branches to a control routine. The control routine sets all necessary switches to enable the program to compute headwaters and outlet velocities for the two pipes selected using the check discharge. After printing the results of the inlet calculations using the check discharge, the program branches to the control routine which restores the adjusted discharge that was used in inlet calculations prior to the calculating of headwaters and outlet velocities for the check discharge. The program then branches to the outlet-control calculations.

Outlet-Control

Outlet-control calculations are begun by analyzing one of the selected pipe-arches along with the number of pipes and the adjusted discharge from inlet-control calculations. The calculations are started by calculating the head required for a pipe-arch flowing full by equation (4). After the head is calculated, the value of tailwater, which is input data, is compared to the rise of the pipe-arch being analyzed. If tailwater is equal to or greater than the rise, then headwater is calculated by equation (6) using the conditions listed. If the value of tailwater is less than the rise, it is necessary to calculate critical depth by an iterative method using equation (5). The iterative method starts with the depth equal to 0.98 times the rise and the depth decrements until equation (5) is satisfied. Headwater is then calculated by equation (6) using the listed conditions.

If the headwater is positive, a test is made to determine whether the culvert is flowing full or with a free-water surface by comparing the results of equation (7) with the rise of the pipe-arch being analyzed. If the results of equation (7) are equal to or greater than the rise being considered, the culvert is considered to

- 3 -

be flowing full. For a negative or zero headwater, or a result from equation (7) less than the rise being considered, critical depth is compared with normal depth. Inlet control governs when normal depth is less than critical depth. The message "Inlet Control Governs" is printed when this occurs as shown in example problem 1. If normal depth is equal to or greater than critical depth, a water surface profile known as a backwater curve must be computed.

Since the occurrence of one of two different backwater curves is possible, it is necessary that the tailwater be compared with critical depth and normal depth to ascertain the appropriate curve. When tailwater is equal to or less than normal depth, equations (8a) and (8c) are used in computing the water surface profile with either tailwater or critical depth, whichever is the greater, used as the starting depth for backwater calculations. When tailwater is greater than normal depth, equations (8b) and (8c) are used to compute the water surface profile. When either backwater analysis is completed, the headwater is calculated by equation (9).

After headwater is computed by one of the above methods, it is compared to the allowable headwater. Depending on the results of the comparison, either the next smaller or next larger size in the table of pipe-arches is selected to obtain a new trial size. The calculations, and comparisons described are repeated for this selection and any subsequent selections. As in inlet control, there are only two acceptable selections; one pipe-arch with headwater equal to or less than the allowable headwater and the next smaller size pipe-arch with headwater greater than the allowable headwater. The rise of the pipearches selected for outlet control can be greater than the allowable headwater.

When the program, by testing counters, has selected two pipe sizes, then outlet velocity calculations are begun. The tailwater is compared with the rise of the pipe-arch and when tailwater is equal to or greater than the rise, the outlet velocity is calculated using the total crosssectional area of the pipe. When the tailwater is less than the rise, tailwater and critical depth are compared and the larger value is used to calculate the flow area. This area is then used in equation (10) to calculate outlet velocity.

After printing the results of the pipes selected for outlet control, the program branches to the control routine. The control routine sets the switches in the program that are necessary to calculate headwaters and outlet velocities for the two pipes selected for the check discharge when the culvert is flowing in outlet control. These calculations for headwater and outlet velocity are determined in the same manner as the original calculations for outlet control.

After printing the check discharge calculations the control routine returns the program to the beginning to read-in another problem.

MATHEMATICAL EQUATIONS

Inlet Control

Approximate Area

AHW = allowable headwater in feet.

Headwater

$$HW = (RISE) (Y)$$
(2)
Where $Y = A + EX + CX^{2} + DX^{3} + EX^{4} + FX^{5} - (S) (SCORR)$

$$HW = headwater in feet,$$

$$RISE = vertical dimension of the pipe-arch in feet,$$

$$A, B, C, D, E, \& F = coefficients determined by$$

$$polynomial curve fitting$$

$$X = \frac{QADJ}{(SPAN)(RISE^{3/2})}$$

$$QADJ = adjusted discharge in cfs,$$

$$SPAN = horizontal dimension of the pipe-arch in feet,$$

$$S = slope of the pipe in ft./ft.,$$

SCORR = correction applied to the slope.

The coefficients in the equation were determined by a computer program — which fitted a polynomial curve, by the method of least squares to the experimental data obtained by the National Bureau of Standards — . Data for models 126, 91 and 21 were used. This is essentially the same data as used to develop the nomographs (chart 5) for inlet control given in Hydraulic Engineering Circular No. 5.

Outlet Velocity

Q = $\frac{1.486}{n}$ AR^{2/3} S^{1/2} (Mannings Equation) (3) Where Q = discharge in cfs, A = Cross-sectional area of water in square feet at any depth of flow, R = hydraulic radius in feet, S = slope of the pipe in feet per foot,

n = roughness factor.

"Least Squares Polynomial Curve Fitting," by R. C. Tennent, U. S. Department of Commerce, Bureau of Public Roads, Library Program M-1, Washington 25, D. C., 1962.

"First Progress Report on Hydraulics of Short Pipes, Hydraulic Characteristics of Commonly Used Pipe Entrances" by J. L. French, U. S. Department of Commerce, National Bureau of Standards, Report No. 4444, Washington 25, D. C., 1955, p. 48-74.

Outlet Control

Head

$$H = \left[1 + K_{e} + \frac{(29.132)(n^{2})(L)}{\binom{A}{WP}} \right] \cdot \left[\frac{Q^{2}}{(64.309)(A^{2})} \right]$$
(4)

Where

H = head for pipe-arch culverts flowing full, in feet, K_e = coefficient of entrance loss, n = roughness factor, L = length of pipe in feet,

A = total cross-sectional area of the pipe-arch

(5)

WP = wetted perimeter of full pipe in feet,

Q = discharge in cfs.

Critical Depth

$$\frac{\propto q^2}{32.2} = \frac{A^3}{T}$$

Where

Q = discharge in cfs,

- A = cross-sectional area of water in square feet at any depth of flow as defined by equation (11),
- T = top surface width of water in feet at any depth of flow,
- \propto = velocity distribution factor.

Headwater

HW = TEMP + H - (L) (S) (6)
When a)
$$d_c = RISE$$
 and RISE > TW, then TEMP = RISE
b) $d_c < RISE$ and $\frac{d_c + RISE}{2} > TW$, then TEMP = $\frac{d_c + RISE}{2}$
c) TW > RISE or TW > $\frac{d_c + RISE}{2}$, then TEMP = TW;
Where RISE = vertical dimension of the pipe-arch
invert at outlet,
TW = tailwater height in feet from culvert
invert at outlet,
HW = headwater in feet from culvert invert
at inlet,
H = head for full flow in feet,
L = length of pipe in feet,
S = slope of pipe in feet per foot
TEMP = WHW - (1 + K_e) $\frac{v^2}{2g}$ (7)
Where TEMP = temporary value that represents a culvert height
WHN = working headwater in feet
K = coefficient for entrance loss
V = mean velocity for full cross-section of barrel
in feet per second

Backwater (computation for water surface profile)

For
$$TW \leq d_n$$

$$x_1 = \left(\frac{d_2 + \frac{v_2^2}{2g}}{s - s_0}\right) - \left(\frac{v_1^2}{d_1 + \frac{v_1^2}{2g}}\right)$$
(8a)

For
$$TW > d_n$$

$$XI = \left(\frac{v_1^2}{d_1 + \frac{v_1^2}{2g}}\right) - \left(\frac{v_2^2}{d_2 + \frac{v_2^2}{2g}}\right)$$

$$S_b - S$$
(8b)

Where X1 = distance in feet between two different
depths of water,

d₁ and d₂ = different depths of vater in feet,

V and V = velocities in feet per second at the
different depths of water,
S₀ = slope of the pipe in feet per foot,

g = 32.2 ft./sec.²

S =
$$\frac{n^2 V^2}{2.21 R^{4r/3}}$$
 (8c)

S = average slope of the water surface in feet
per foot,

n = roughness factor,

V = average velocity in feet per second of the
two cross-sections,

R = average hydraulic radius in feet of the
two cross-sections.

HW = d₁ + $\frac{V_1^2}{2g}$ + $\frac{K_e V_1^2}{2g}$ (9)

Where HW = headwater in feet,

K_e = coefficient of entrance loss,
d₁ = depth in feet at the previous cross-section,
V₁ = velocity in feet per second at the previous

cross-section.

Outlet Velocity

$\mathbf{V} = \frac{\mathbf{Q}}{\mathbf{A}}$	(10)
Where	V = outlet velocity in feet per second,
	Q = discharge in cfs,
	A = cross-sectional area of water in square feet,
When	DTW \geq RISE or $d_c =$ RISE, then Area is the total cross-sectional area,
	$d_c \ge$ DTW, then Area is for depth equal to d_c ,
	d_{c} < DTW, then Area is for depth equal to DTW,
where	DIW = design tailwater in feet,
	RISE = vertical dimension of the pipe-arch in feet,
	d _c = critical depth in feet.

- 10 -

- 11 -

INPUT DATA

The input data for this program are the same as described for the Hydraulic Analysis of Circular Culverts, HY-1. The input data for the program are:

- 1. Culvert code Slope of pipe
 Length of pipe
- 5. Allowable headwater
- 6. Design tailwater7. Check discharge
- 4. Design discharge
- 8. Check tailwater

These input data are discussed in detail in the following paragraphs.

Culvert Code

The culvert code is taken from Table 2, page 16, and incorporates all the necessary constants for the different inlets and the types of paving listed. The first four numbers comprising the culvert code are the subscripts for the constants in Table 3, page 17, and the fifth number is the subscript for the Inlet Control Coefficients in Table 4, page 17.

To find the correct culvert code, from Table 2, only the type of pipe-arch invert treatment and the type of inlet need be known. Types of inlets are described in BPR HY-1. Enter Table 2 under the type of pipe-arch invert treatment and read down the table until opposite the type of inlet to be used. The five digit number at the intersection of the appropriate row and column is the Culvert Code. For example: A riveted or structural plate pipe-arch with mitered inlet and an unpaved invert has a culvert code of 33122. (The pipe roughness n is changed automatically when the size selected indicates riveted or structural plate.)

Slope of Pipe

Slope of pipe (SLOPE), in feet per foot, is the elevation of the invert at the inlet minus the elevation of the invert at the outlet divided by the length of pipe.

Length of Pipe

Length of pipe (DIST), in feet, is the total length of pipe measured along the invert from the inlet to the outlet.

Design Discharge

Design discharge (Q_1) , in c.f.s., is the quantity of water that is used in the selection of pipe size.

Allowable Headwater

Allowable headwater (AHW), in feet, is the height of water above the invert at the inlet end of the pipe selected by the designer. The allowable headwater should be below the shoulder line, otherwise the culverts selected by this program might not have sufficient cover. If the sizes selected give insufficient cover over the arch, the AHW should be decreased and the problem rerun.

Design Tailwater

Design tailwater (DTW), in feet, is the depth of water in the outlet channel above the invert at the outlet end of the pipe. This depth is determined by downstream flow conditions in the natural channel.

Check Discharge

Check discharge (Q_2) , can be used for two purposes: (1) to find headwater for a discharge greater than the Design Discharge (Q_1) should a greater flood need to be investigated; and (2) to obtain various headwater-discharge values for plotting performance curves for the culvert sizes selected by the program for the input problem. Values of Q_2 in c.f.s., can be less than or greater than Q_1 to obtain the values under (2) above. The solution for finding these values requires a series of problems using different input cards, keeping all the input data the same except Q_2 and check tailwater (CTW).

Check Tailwater

Check tailwater (CTW), in feet, is the depth of water above the invert of the outlet end of the pipe for the check discharge (Q_2) .

Input Data Form

The input data form is as shown on page 18. This form incorporates on one page a sketch and data of the problem and the two cards used for input data to the computer program. After having the sketch portion of the data form completed, the input data portion of the form is filled in for use by the punch card operator. Card No. 1 is for problem identification and contains 80 columns of alphabetic and/or numeric information. (Position 1 must contain the number one.) This could be such items as: The project number, the station of the culvert, and the date submitted to the computer. Card No. 2 is for the data listed under the card columns and all data are necessary for the program to function properly. See examples on pages 40 to 48. All items of input data should have a value recorded on the input data form. If any of the items have a zero value, a zero should be shown to the left of the decimal point on the form. Leading zeros are not necessary.

OUTPUT DATA

The output of this program is either a message or an answer. Messages indicate that something is wrong with the imput data or the answer computed is not an applicable solution.

The messages are:

- 1. ALLOWABLE HEADWATER TOO SMALL.
- 2. ALLOWABLE HEADWATER TOO HIGH
- 3. NUMBER OF PIPES EXCEEDS SIX
- 4. CULVERT CODE INVALID.
- 5. AVAILABLE SIZES EXCEEDED.

Message number one is printed when the elevation of the allowable headwater is not above the elevation of design tailwater by at least one-half foot. This difference of one-half foot has been set arbitrarily by the authors but may be changed merely by changing the constant in the formula for HEIT. This message is used to check against tailwater elevation being higher than headwater elevations.

Message number two is a check to insure that the selection of pipe-arch sizes does not require a size smaller than the minimum size in the table of pipe-arches. This condition occurs when the program is selecting a smaller size from the table in order to increase the calculated headwater to meet a given allowable headwater.

Message number three is a check on the number of pipes being used. The maximum number of pipes that can be used in this program has been set at six. If this number is too high or too low, the constant can be changed in the test for maximum number of pipes.

Message number four is a check to insure that a valid culvert code is submitted as input data. A table of valid culvert codes is stored in the computer. If the code submitted does not match a value in the table, then a message "Culvert Code Invalid" is printed.

Message number five is printed when the number of barrels selected for inlet control are inadequate for outlet control. In such a problem the number of barrels selected for inlet control are increased by one. Then inlet and outlet control results are printed out. This procedure makes the comparison of inlet and outlet control results possible which would not be the case for differing numbers of barrels.

The answers are:

- 1. Problem identification.
- 2. List of input data.
- 3. Inlet-control results.
- 4. Outlet-control results.

Problem identification is the same as was read-in as imput data. This is used for identification of the analysis as well as for a record.

The input data is listed to assist the designer in selecting an acceptable culvert. Also, this information is helpful in correcting the input data if one of the messages is printed out.

Inlet-control consists of two pipe-arch sizes, one arch having a headwater equal to or less than the allowable headwater, and the other, a size smaller, having a headwater greater than the allowable. For each size selected, the following is printed out:

1. Discharge in c.f.s.

2. Number of pipes.

3. Span of arch in inches.

4. Rise of arch in inches.

- 5. Headwater in feet.
- 6. Outlet velocity in f.p.s.

The span and rise are printed in inches and are the layout dimensions as given by the pipe-arch manufacturers. The nominal dimensions for the corresponding layout dimensions can be obtained from Table 1, pages

Using the check discharge of the input data, new values of headwater and outlet velocity are computed for the two culverts selected for both inlet control and outlet control. These results are printed out in the same form as given for the design discharge.

Outlet-control results are the same general form as inletcontrol results. The only difference occurs when "INLET CONTROL GOVERNS" is printed instead of the values for headwater and outlet velocity. This is printed whenever the normal depth (DEP) of flow is less than critical depth. Inlet control governs when this message appears.

The value under discharge will only correspond to the Q1 or Q2 used as input when the number of pipes shown is equal to one. For multiple pipes the input discharge, Q1 and Q2, is divided by the number of pipes used, changing the discharge to equal that carried by one pipe.

Selection of Culvert

Knowing the Allowable Headwater (AHW), the size of a pipe-arch culvert can be selected by comparing the values of headwater listed as the output results. It must be remembered that for any particular pipe-arch the control with the highest headwater is the governing control.

A typical output listing is as shown in the sample problems on pages 40 to 48.

TABLE 1

Table of Pipe-Arch Culverts

Stru	ctural F 18-inch	Corner Ra	-Arches dii)			5.FC	letural P ll-ineh C	orner Rad	iii)
SP	AN	RISE		TOTAL AREA		SF	°AN	RISI	E
ominal	Layout	Nominal	Layout			Nominal	Layout	Nominal	Layout
tIn.	Inches	FtIn.	Inches	Sq. Feet		FtIn.	Inches	FtIn	Inche
>-1	73.00	4-7	55.00	22.09		13-3	159.40	9-4	112.3
5-4	76.00	4-9	57.10	24.09		13-6	162.20	9-6	114.4
-9	81.20	4-11	58.90	26.14		14-0	167.60	9-8	110.20
-0	84.20	· 5 - 1	61.10	28.39		14-2	170.60	10-10	118.40
7-3	87.00	5-3	63.20	30.60		14-5	172.80	10-0	120.50
8-ז	92.40	5-5	65.00	32.92		14-11	178.60	10-2	122.30
7-11	95.20	5 - 7	67.20	35.39		15-4	184.20	10-4	124.1
8-2	97.80	5-9	69.40	37.95		15-7	187.00	10-6	126.3
8-7	103.40	5-11	71.10	40.40		15-10	189.60	10-8	128.5
8-io	106.00	6-1	73.30	43.10		16-3	195.40	10-10	130.2
2-4	111.80	6-3	75.10	45.83		16-6	198.00	11-9	132.4
-6	114.20	6-5	77.30	48.70		17-0	203.60	11-2	134.20
2_0	116.60	6-7	79.50	51.64		17-2	206.20	11-4	136.3
0-3	122.60	6-9	81.20	54.51		17-5	208.80	11-6	138.5
0-8	128.40	6-11	82.90	57.46		17-11	214.60	11-8	140.3
0-11	131.00	7-1	85.10	60.70		18- 1	217.20	11-10	142.4
11-5	136.80	7-3	86.90	63.87		18-7	223.00	12-0	144.2
1_7	139.40	7-5	89.10	67.23		18- 9	225.40	12 - 2	146.4
11_10	141.80	7.7	91.30	70.68		19-3	231.40	12-4	148.1
12-4	147.80	7-9	93.00	74.05		19-6	234.00	12-6	150.3
12-6	150.20	7-11	95.20	77.64		19-8	236.40	12-8	152.5
12-8	152.40	8-1	97.40	81.34		19-11	238.60	12-10	154.7
12-10	154.40	8-4	99.70	85.20		20-5	244.80	13-0	156.4
13-5	160.80	8-5	101.30	88.74		20-7	247.00	13-2	158.6
13-11	167.20	8-7	103.00	92.55					
14-1	169-40	8-7	105.20	96.53					
1					أمت المحصدات المتكرمية والتبريس ببالريبين والمحاد	A DESCRIPTION OF THE OWNER OF THE	ويعارفون والمتحد والمحادث والمحاد	*	

51 I

£.

TOTAL AREA

Sq. Feet

102.00

106.00

110.88

115.20

119.5

124.00

129.00

133.82 138.00

143.00

148.00

153.06

158.48 163.35

168.00

174.00

179.00

184.68

190.00 196.18

202.40 207.80

214.00

98.30

...

	State of the Owner of the Own	وبها والمحدث والجاري والمتجود المتجون مناطرة مراكر		
F	liveted Me	tal Pipe	-Arches	
S	SPAN	RI	SE	TOTAL AREA
Nominal Inches	Layout Inches	Nominal Inches	Layout Inches	Sq. Feet
18 22 25 29 36 43 51 58 65 72 79	18.10 21.70 25.30 28.90 36.10 43.30 50.60 57.80 65.00 72.20 79.40	11 13 16 18 22 27 31 36 40 44	11.00 13.30 15.50 17.80 22.20 26.60 31.10 35.50 40.00 44.40	1.07 1.59 2.10 2.81 4.39 6.28 8.55 11.23 14.23 17.52 21.01

TABLE 1 - Continued *

* For some of the arch sizes common to this and previous editions, the layout dimensions differ slightly. The above noted values reflect current usage.

TABLE 2

Culvert Code Table

Riveted or	Inlet Type	Hydraulic**	Riveted or
Structural Plate		Exper.	Structural Plate
Unpaved		Model No.	Paved
3 2 1 1 1	Projecting	126	3 2 2 1 1
3 3 1 2 2	Mitered	91	3 3 2 2 2
3 2 1 3 3	Headwall	21	3 2 2 3 3

** First Progress Report on Hydraulics of Short Pipes, Hydraulic Characteristics of Commonly Used Pipe Entrances, by John L. French, 1955, U. S. Department of Commerce, National Bureau of Standards, pages 48-74.

-	17	-
---	----	---

TABLE 3

Table of Constants

Velocity Distribution Factor	Slope Correction Factors									
Metal Pipe ALPHA = 1.16	$\frac{\text{SCORR}_{1}}{\text{SCORR}_{2}} = 1.50$ $\frac{\text{SCORR}_{2}}{\text{SCORR}_{3}} = 0.00$									
Manning's n	Entrance Loss Coefficients									
Multiplate-unpaved $CN_1 = 0.032$ Multiplate-paved $CN_2 = 0.026$ Riveted-unpaved $CN_3 = 0.024$ Riveted-paved $CN_4^3 = 0.019$	CM projecting $CKE_1 = 0.09$ CM mitered $CKE_2 = 0.70$ Concrete headwall $CKE_3 = 0.50$									

TABLE 4

Table of Coefficients for Inlet Headwater

	Inlet Headwater Coefficients														
Hydraulic Model No.	A	В	С	D	E	F									
126 91 21	0.0890527 0.0833006 0.111281	0.712545 0.795145 0.610579	-0.270921 -0.434075 -0.194937	0.0792502 0.163774 0.0512893	-0.00798048 -0.0249139 -0.00480538	0.000293213 0.00141066 0.000168547									

1

18.

* See back of the input data form

٠

*

CULVERT CODE TABLE

		COR	RUGATED METAL	, PIPE			CONCRETE PIPE							
		CIRCULAR		PIPE	ARCH	CIRCULAR								
Inlet Type	Riveted	Riveted & 25% Paved	Structural Plate	Structural Plate & 25% Paved	Paved 25%	Unpaved	Inlet type							
Projecting Mitered Headvall End Section Bevel (A) Bevel (B) Tapered	1 2 3 1 1 1 3 3 2 2 1 2 3 3 3 1 2 3 3 5 1 2 3 4 6 1 2 3 4 7 1 1 3 4 8	1 2 4 1 1 1 3 4 2 2 1 2 4 3 3 1 2 4 3 5 1 2 4 4 6 1 2 4 4 7 1 1 4 4 8	12111 13122 12133 12146 12147	12211 13222 12233 12246 12247	32211 33222 32233	3 2 1 1 1 3 3 1 2 2 3 2 1 3 3	Socket-end Projecting Socket-end Headvall Square Edge Projecting Square Edge Headvall End Section Bevel (A) Bevel (B) Tapered	2 2 5 5 2 2 2 5 5 2 2 2 5 5 3 2 2 5 3 3 2 2 5 5 4 2 5 5 5 4 2 5 5 5 4 2 5 5 5 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						

Back of input data form

SAMPLE INPUT CARDS

		C!	IR	D	M).	1]							-												_																						ing in		-		inini,
!	2	3	4	5	6];	'	8	9	N	0	1	12	13	14	15	16	17	1	811	9	20	21	22	2	32	42	25	26	27	28	29	30	3	ıb:	23	3 3	43	15	36	37	38	39	4	ł	11	42	43	44	4	5 4	6	17 4	•	19	50
1		9	R	e	ŀ	ł	2	C	7	·	į	2	-	4	6	-	2	3	ľ			5	7	A	7	-]-	7	2	~		1	¢	9	1	2	ø	<u>}</u>	ŀ	2	•	A	ŀ	k	1	· ·	<	R		0	1	1	1	9	4	6	2

- 61 -

PROBLEM IDENTIFICATION

NOTE: For Key Punching Purposes, the number zero is shown as ϕ and "eye" as I. Number one (1) must appear under position 1 on Card No. 1.

CARD NO). 2					and the state of the	
1 2 3 4 5	8 9 10 1	1 12 13 14 15 16 17 18 19	20 21 22 23 24 25 26	29 30 3132 33	36 37 38 39 40 41	42 43 44 45 46 47	50 51 52 5354
22551	.05	200.0	180.0	10.0	3.0	225.0	4.0
CULVERT	SLOPE	LENCIH	DESIGN	ALLOWABLE	DESIGN	CHECK	CHECK
CODE	OF PIPE	of pipe	DISCHARGE	HEADWATER	TAILWATER	DISCHARGE	TATWATER
	(8 ₀)	(L)	(Q1)	(AHW)	(TW ₁)	(مي)	(TW ₂)

- 20 -

DEFINITION OF TERMS

A(15)	~ -	The first coefficient in the equations used for inlet control. When I5 is equal to 4, this refers to the fourth value of A.
B(15)		The second coefficient in the equations used for inlet control headwater calculations.
C(15)		The third coefficient in the equations used for inlet control headwater calculations.
D(15)	÷ •	The fourth coefficient in the equations used for inlet control headwater calculations.
E(15)		The fifth coefficient in the equations used for inlet control headwater calculations.
F(15)		The sixth coefficient in the equations used for inlet control headwater calculations.
CR(K)		A table of corner radii for the pipe-arches.
BDIS(K)		A table of "B" dimensions for the pipe-arches.
BR(K)		A table of bottom radii for the pipe-arches.
СКЕ(14)		Entrance Loss Coefficients. When I4 equals one, this refers to the first value of entrance loss.

- CN(I3) -- Manning's n for various types of pipe. When I3 equals one, this refers to the first value of n.
- DC(I) -- Critical Depth in feet. Two values of critical depth are stored, one for each diameter of pipe chosen by outlet control. Critical depth is recalled later for outlet control velocity calculations.
- HYDR(I) -- Hydraulic Radius in feet. The values of hydraulic radius for two cross-sections are stored in HYDR(I) during backwater calculations.
- KT(I) -- A table of valid culvert codes.

1

ł

- RISE(K) -- A table of the vertical dimensions of the pipe-arches.
- SCORR(I2) -- Slope Correction Factor. When I2 equals one, this refers to the first value of slope correction.
- SPAN(K) -- A table of the horizontal dimensions of the pipe-arches.
- SPH(I) -- Specific Head in feet. The values of specific head for two cross-sections are stored in SPH(I) during backwater calculations.
- TOAR(K) -- A table of the total cross-sectional area of the pipe-arches.
- TR(K) -- A table of the top radii of the pipe-arches.
- V(I) -- Velocity in feet per second. The values of velocity for two cross-sections are stored in V(I) during backwater calculations.

- 22 -

AHW	.co dia	Allowable headwater in feet.
ALPHA		Velocity Distribution factor.
AOVWP	-	Area of pipe to the $4/3$ power divided by wetted perimeter to the $2/3$ power.
AREA	.	The area of water in square feet in any pipe for any depth of flow.
AVEHR		Average of the hydraulic radii calculated in backwater calculations.
AVEV		Average of the velocities calculated for two cross-sections in backwater calculations.
C O		A unyking stormen logation for shack discharge
		A working storage location for theth discharge.
CTW		Check tailwater in feet.
DECRM	400 GB	The amount of decrement of the depth of flow in the pipe during critical depth calculations in feet.
DEP	Cai (38)	Working depth of flow in the pipe in feet.
DIST	au ao	Length of the pipe in feet.
DSUBC		A temporary storage location for storing the critical depth while doing backwater calculations.
DTW	69 68	Design tailwater in feet.
DX1	*** ***	The distance between the two cross-sections in backwater calculations.
FRISE	53 m	The working location for the rise of the pipe-arch being analyzed and it is in feet.
FSPAN		The working location for the span of the pipe-arch being analyzed and it is in feet.
HEAD		The Head required for given flow in outlet control in feet.
HEIT	un 201	The maximum value that design tailwater may obtain.

.

1

HWOVD		Headwater divided by rise. This is the answer from the inlet headwater equation.
HWl		Headwater one in feet. This is the headwater for the pipe size stored in SPANL.
HW2		Headwater two in feet. This is the headwater for the pipe size stored in SPAN2.
I	~	A counter used to indicate the particular variable of a group.
<u>11</u>	es =	A counter set by the culvert code.
12	-	A counter set by the culvert code for use with the constant SCORR.
13		A counter set by the culvert code for use with the constant CN.
I4		A counter set by the culvert code for use with the constant CKE.
15		This is a counter set by the culvert code that designates which hydraulic model is to be used; therefore, it is used to refer to the coefficients A, B, C, D, E and F.
190	47 4 8	A counter used to determine when the working diameter has been incremented.
191		A counter used to determine when the working diameter has been decremented.
II3	ato 400	A working location for the counter I3.
INVAL	8 •	A counter used to count the number of outlet control invalid calculations.
К	هه ه	A counter that keeps count of which one of the pipe-arches from the table of pipe-arches that is being analyzed.
KI.	42 2 3	A counter which counts the number of times outlet control is calculated.
K2	8 2 6 9	A counter which counts the number of times an answer has been printed by the outlet control invalid routine
KOUNT	.	A counter which counts the number of times critical

PIPES	210-019	The number of pipes calculated by inlet control.
Q1		Design discharge in cfs.
Q2		Check discharge in cfs.
ÇADJ	**	Adjusted discharge in cfs. This is used for storing working discharge and it is Ql or Q2 divided by the number of pipes.
Q20 A		A term that is used in the calculation of head for full flow.
Q20VG		Discharge squared divided by 32.2. This is used in outlet control in critical depth calculations.
RISEL	* *	Rise one in inches. The rise of the first pipe- arch selected is stored in RISEL.
RISE2	699- 200	Rise two in inches. The rise of the second pipe-arch selected is stored in RISE2.
RFOUR		A term that is used in the calculation of head for full flow.
Sl	69 ap	The slope of the water surface between two cross- sections in backwater calculations.
SLOPE	43 ga	Slope of the pipe in feet per foot.
SPANL	44 45	Span one in inches. The span of the first pipe-arch selected is stored in SPAN1.
SPAN2		Span two in inches. The span of the second pipe-arch selected is stored in SPAN2.
SUMX		The accumulated distance in feet from the outlet end of the pipe in backwater calculations.
Т		The top surface width of water in feet in any size pipe for any depth of flow.
TEMP		A temporary location used for storing temporary calculations.
VELL	.	Outlet velocity one in feet per second. This is the outlet velocity for the pipe size stored in SPAN1.
VET5		Outlet velocity two in feet per second. This is the outlet velocity for the pipe size stored in SPAN2.

- WHW -- Working headwater in feet. The calculations for headwater are stored in WHW until the pipe sizes are selected.
- WP

Х

-- Wetted perimeter in feet of the water in any pipe for any depth of flow.

-- The independent variable in the equation for inlet control headwater calculations.

C C C C C

00000 COMPUTER PROGRAM FOR HYDRAULIC ANALYSIS OF PIPE - ARCH CULVERTS 00050 00100 BUREAU OF PUBLIC ROADS -- REVISED MAY 1969 - BY MARIO MARGUES 00150 00200 COMMON ASUB1, ASUB2, ASUB3, XX1, XX2 00250 COMMON I1, I2, I3, I4, I5, SLOPE, DIST, Q1, AHW, DTW, Q2, CTW, QADJ, PIPES, IHL 00300 80), SPANK, RISEK, WHW, SPAN1, RISE1, HW1, VEL1, SPAN2, RISE2, HW2, VEL2 00350 2,NT,K,K1,K2,INVAL,Y,T,Q20VG,FRISE,TEMP,DEP,DECRM,AREA 00400 DIMENSION SCORR(3), CN(4), CKE(3), A(3), B(3), C(3), D(3), E(3), F(3), 00450 3SPAN(61), RISE(61), TOAR(61), TR(61), SPH(2), V(2), HYDR(2), DC(2) 00500 4 ,BR(61),BDIS(61),CR(61) 00550 DATA ALPHA/1.16/, SCORR/1.5,0.5,0.0/, CN/.032,.026,.024,.019/, CKE 00600 1 /.9,.7,.5/,A/.890527E-1,.833006E-1,.111281/,B/.712545,.795145 00650 +.610579/,C/-.270921,-.434075,-.194937/,D/.792502E-1,.163774, 00700 2 .512893E-1/,E/-.798048E-2,-.249139E-1,-.480538E-2/,F/.293213 3 00750 E-3,.141066E-2,.168547E-3/ 4 00800 DATA SPAN/18.1,21.7,25.3,28.9,36.1,43.3,50.6,57.8,65.0,72.2,79.4, 00850 173.0,76.0, 81.2,84.2,87.,92.4,95.2,97.8,103.4,106.,111.8,114.2, 00900 00950 2116.6,122.6,128.4,131.,136.8,139.4,141.8,147.8,150.2,152.4,154.4 3160.8, 167.2, 169.4, 159.4, 162.2, 167.6, 170.6, 172.8, 178.6, 184.2, 187.0, 01000 4189.6,195.4, 198.,203.6,206.2,208.8,214.6,217.2,223.,225.4,231.4, 01050 01100 5234.0,236.4, 238.6,244.8,247./ DATA RISE/11.0,13.3,15.5,17.8,22.2,26.6,31.7,35.5,40.0,44.4,48.7, 01150 155.0, 57.1, 58.9, 61.1, 63.2, 65., 67.2, 69.4, 71.1, 73.3, 75.1, 77.3, 79.5, 01200 281.2, 82.9,85.1,86.9,89.1,91.3,93.,95.2,97.4,99.7,101.3,103., 01250 3 105.2, 112.3,114.4,116.2,118.4,120.5,177.3,124.1,126.3,128.5, 01300 134.2,136.3,138.5,140.3,142.4,144.2,146.4,148.1, 01350 4 130.2.132.4, 01400 148.1. 152.5.154.7.156.4.158.6/ DATA TOAR/1.07,1.59,2.10,2.81,4.39,6.28,8.55,11.23,14.23,17.52,21. 01450 101, 22.09, 24.09, 26.14, 28.39, 30.60, 32.92, 35.39, 37.94, 40.4, 43.1, 45.79 01500 2,48.67,51.60,54.51,57.46,60.7,63.86,67.18,70.68,74.,77.64,81.34, 01550 3 85.14,88.68,92.54,96.53,98.,102.,106.,110.,115.,119.,124.,129., 01600 4 133.,138.,143.,148.,153.,158.,163.,168.,174.,179.,185.,190.,196., 01650 01700 5 202 ... 208 ... 214 ./ DATA BR/19.12, 37.06, 33.50, 55.00, 73.25, 91.56, 97.25, 115.69, 129.31, 01750 1142.94,145.50,76.30,98.60,83.50,104.20,136.20,109.80,137.90,182.90 01800 2,141.00,178.70,144.60, 01850 01900 3 177.5.227.7.178.3.153.2.180.4.157.9.183.2.216.4.186.5.216.8. 4257.4,314.7,254.8,220.7,254.1,192.6,220.6,197.9,222.6,256.6,227.7, 01950 5 208.5,232.1,260.6,236.,263.2,241.,266.8,297.9,270.6,299.7,274.5, 02000 6 302.3,278.6,305.1,336.5,374.3,338.1,373.5/ 02050 DATA TR/10.06,11.87,12.75,14.75,18.25,21.56,25.12,29.12,32.75, 02100 02150 1 36.31, 39.75, 36.80, 2 38.1,41.,42.3,43.51,46.5,47.7,48.91,51.9,53.01,56.2,57.3,58.31,61 02200 3.5, 64.9, 65.9, 69.4, 70.2, 71.1, 74.7, 75.5, 76.4, 77.3, 80.7, 84.4, 85.1, 80 02250 4 .1,81.3,84.4,85.6,86.6,89.8,93.1,94.1,95.2,98.5,99.5,102.9,103.8, 02300 02350 5 104.8,108.2,109.1,112.6,113.5,117.,117.9,118.8,119.7,123.2,124./ DATA BDIS/4.5,4.75,5.25,5.5,6.25,7.0,8.0,9.25,10.5,11.75,13.25,21. 02400 1,20.5,22.,21.4,20.8,22.4,21.7,20.9,22.7,21.9,23.8,22.9,21.9,24., 02450

2 26.1,25.1,27.4,26.3,25.2,27.5,26.4,25.2,24.,26.4,28.9,27.6,38.6, 02500 3 37.8,39.6,38.9,38.,39.9,41.9,41.,40.1,42.2,41.2,43.4,42.4,41.4, 02550 4 43.6,42.5,44.8,43.7,46.,44.9,43.8,42.6,45.,43.8/ 02600 DATA CR/3.5,4.0,4.0,4.5,5.0,5.5,6.0,7.0,B.0,9.0,10.0,18.0,18.0, 02650 02700 02750 02800 20 CALL H18021 02850 С 02900 INITIALIZE INLET CONTROL С 02950 C 03000 50 CLTH = (DIST+DIST - SLOPE+DIST + SLOPE+DIST)++0.5 03050 PIPES = 1.003100 DSUBC = 0.003150 = 02 0.0 03200 = 01 QADJ 03250 113 = [3 03300 55 190 = 0 03350 191 = 0 03400 = 0 NSW1 03450 NSW2 = 1 03500 NSW7 = 0 03550 NSW8 = 1 03600 С 03650 CALCULATE APPROXIMATE AREA OF REQUIRED PIPE - ARCH С 03700 С 03750 60 AREA = 0.785398 . QADJ / AHW 03800 NSW12 = 403850 GO TO 800 03900 70 IF (FRISE - AHW - 1.0)100,100,80 03950 80 PIPES = PIPES + 1.004000 IF [PIPES - 6.0)95,95,90 04050 90 CALL WR3 04100 GO TO 20 04150 95 QADJ = Q1 / PIPES 04200 GO TO 55 04250 С 04300 С INLET CONTROL CALCULATIONS 04350 C 04400 100 X = QADJ / (FSPAN + FRISE ++ 1.5) 04450 HWOVD = A(15) + (B(15) + (C(15) + (D(15) + (E(15) + F(15))))04500 • X) • X) • X) • X - SCORR(12) • SLOPE 1 04550 = HWOVD + FRISE WHW 04600 120 GO TO (130,650,500,350),NSW2 04650 С 04700 С SELECTION OF SIZES ROUTINE 04750 C 04800 130 IF (WHW - AHW)131,131,195 04850 131 IF (190)132,132,500 04900 132 [91 = 1 04950

05000 NSW3 = 0 Ĉ 05050 С STORE FIRST SET OF RESULTS 05100 05150 С 140 SPAN1 = SPAN(K) 05200 RISE1 = RISE(K)05250 05300 ㅋ 씨님의 HW 1 05350 DC(1) = DSUBCIF [NSW3)170,150,170 05400 150 IF (K - 2)151,160,160 05450 05500 151 CALL WR4 05550 GO TO 20 05600 160 K=K-1 05650 GO TO 850 05700 170 K = K+105750 IF(K-61)850,850,180 180 K = 1105800 **V5850** IF (NSW1)190,80,190 05900 190 CALL WRS $Q1 = Q1 \Rightarrow PIPES$ $Q2 = Q2 \Rightarrow PIPES$ 05950 06000 06050 CALL H18023 06100 GO TO 80 06150 195 IF (191)196,196,500 196 190 = 1 NSW3 = 1 06200 06250 GO TO 140 06300 06350 С С INITIALIZE OUTLET CONTROL 06400 С 06450 200 INVAL = 0 06500 06550 190 **≖** 0 06600 **= 0** 191 06650 **=** 0 K1 06700 K 2 **≃** 0 06750 NSW1 = 1 06800 NS₩2 **x**] 06850 NSW12 = 1WTW = DTW 06900 06950 S₩=0. C 07000 **GUTLET CONTROL CALCULATIONS** 07050 С 07100 С 220 Q20A = QADJ + QADJ / TOAR(K) / TOAR(K) / 64.309 07150 07200 DEP = FRISE 07250 NSW13 = 0 07300 NSW14 = 207350 GO TO 1100 221 RFOUR = 1 AREA / WP) ** 1.33333 07400 HEAD = (1.0 + CKE(I4) + (29.132 • CN(I3) • CN(I3) • DIST / 07450

			07500
	1		07500
-		KI = KI + I	07550
C			07600
С		INITIALIZE CRITICAL DEPTH CALCULATIONS	07650
С			07700
	222	Q20VG = QADJ + QADJ + ALPHA / 32.2	07750
		DEP = 0.98 + FRISE	07800
		NSW10 = 0	07850
		GO TO 700	07900
	230	DSUBC = DEP	07950
C			08000
Ċ		INITIALIZE NORMAL DEPTH CALCULATIONS	08050
č			08100
•		$TEMP = QAD_{I} + CN(I_{I}) / I_{I} 486 / SLOPE_{I} +0.5$	08150
		DEP = 0.90 + ERISE	08200
		S=1	08250
			08300
	240		00350
~	240	USUBN - UEF	00330
C C		DETERMINE OUT ET CONTON CONDITION	08400
C		DETERMINE DUTLET CONTROL CONDITION	08450
C			08500
		$TEMP = \{ FRISE + DSUBC \} = 0.5$	08550
		IF (TEMP - WTW)245,245,250	08600
	245	TEMP ≠ WTW	08650
	250	WHW = TEMP + HEAD - SLOPE + CLTH	08700
		IF (WHW)260,260,255	08750
	255	TEMP = WHW - (1.0 + CKE(I4)) + Q20A	08800
		IF (TEMP - FRISE)260,120,120	08850
	260	IF (DSUBN - DSUBC)300,270,270	08900
	270	NSW6 = 0	08950
		IF (WTW - DSUBC)290,290,275	09000
	275	IF (HTW - DSUBN)285-285-280	09050
	280	NSW6 = 1	09100
	285		09150
	205		09200
	200		09250
	270		09300
r			09350
2		IN ET CONTROL COVERNS ROUTINE	00400
č		INCET CONTROL GOVERNS ROUTINE	09400
ι	-		09430
	300	SPANK=SPANKJ	09500
		KISER = KISE(K)	04220
		LALL WKO	09600
		INVAL = INVAL + 1	09650
		$K_2 = K_2 + 1$	09700
		IF ($K1 - 2$)340,360,360	09750
	340	NSW2 = 4	09800
		NSW12 = 2	09850
		IF (SPAN1 - SPAN2)170,160,160	09900
	350	NSW4 = 0	09950

- 29 -

		DC(1) = DSUBC	10000
	351		10050
		NSW7 = -1	10100
		GO TO 540	10150
	355	IF (NSW4)380+356+380	10200
	356	SPANK = SPAN(K)	10250
		RISEK = RISEIK)	10300
		CALL WR7	10350
		$K_2 = K_2 + 1$	10400
		1F(K2-4)357.20.20	10450
	357	60 10 390	10500
	360	BISE2 = BISE(K)	10550
	,	SPAN2 = SPAN(K)	10600
		IF(INVA) -2)365,381,381	10650
	365	SWEIL	10700
	370	NSW4 = 1	10750
	2.0	IF (SPAN1 - SPAN2)371.371.372	10800
	371		10850
	2.1		10900
	372		10950
	212		11000
	380		11050
	500		11100
	381	1 = 1 + 1 = 1 + 1 = 1 = 1 = 1 = 1 = 1 =	11150
	300	1F(CL-), 331, 392, 391	11200
	201		11250
			11300
		GO TO 590	11350
	392		11400
	372		11450
		SW = 0.0	11500
		FSPAN= SPAN(K)/12.	11550
		FRISE= RISE(K)/12	11600
		G0 I0 695	11650
C			11700
č		BACKWATER PROFILE ROUTINE	11750
č			11800
Ť	4CO	SUMX = 0.0	11850
			11900
		NSW13 = 0	11950
		NSW14 = 3	12000
		IF (DEP - FRISE)1100,410,420	12050
	410	IF (NSW6)1100,490,1100	12100
	420	DEP = WTW - SLOPE + DIST	12150
	_ •	1F (DEP - DSUBN)425,425,476	12200
	425	SUMX = {WTW-FRISE/(1.+SLOPE+SLOPE)++0.5)+(1.0+1.0/SLOPE/SLOPE)++.5	12250
	-	DEP = FRISE	12300
		GO TO 1100	12350
	430	V(I) = QADJ / AREA	12400
		SPH(I)= DEP + ALPHA + V(I) + V(I) / 64.4	12450

		HYDR(I) = AREA / WP	12500
		IF (I - 2)431.450.450	12550
	431	I = I + 1	12600
	435	IF (NSW6)480,440,445	12650
	440	$DEP = DEP + O_{\bullet}2$	12700
		IF (DEP - FRISE)1100.490.490	12750
	445	$DFP = DFP = O_{\bullet}2$	12800
		60 TO 1100	12850
	450	$AVEV = \{V(1) + V(2)\} + 0.5$	12900
		AVEHR = (HYDR(1) + HYDR(2)) + 0.5	12950
C			13000
ř		COMPLITE SLOPE OF WATER SURFACE.S	13050
č			13100
Č		51 = (N{I3) + (N{I3) + AVEV + AVEV / 2 21 / AVELOAN1 22222	13160
		IE 1 NSW6 1452-451-452	13200
	451		13200
	452	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	13200
	450	$\frac{1}{1} + \frac{1}{2} = \frac{1}{2} + \frac{1}$	13350
	400	$C_{1} = C_{2} = C_{1} = C_{1$	13330
	441	0010 + 002	13400
r	401	DAT - (SPACE) - SPACE) / (SLUPE - ST /	13430
r		ACCUMULATE LENCTH OF BACKWATED CHONE	13500
č		ACCUMULATE LENGTH OF BACKWATER CURVE	13550
C.			13600
	402		13650
		1 - (3000) - (210) -	13700
	470	V(1) = V(2)	13750
		SPH(I) = SPH(Z)	13800
		HYDR(1) = HYDR(2)	13850
			13900
	4/1	1F (NSW6)473,472,473	13950
	472	DEP = DEP - ISUMX - CLIH)/DXI + 0.2	14000
		GU 10 476	14050
	473	DEP = DEP + ISUMX - CLTH) / DXI + 0.2	14100
		GD TD 476	14150
	475	DEP = DSUBN	14200
	476	NSW6 = -1	14250
			14300
		GO TO 1100	14350
	480	WHW = SPH(1) + CKE(14) + V(1) + V(1) / 64.4	14400
	490	NSW14 = 2	14450
		GO TO 120	14500
C			14550
Ç		STORE SECOND SET OF RESULTS	14600
С			14650
	500	SPAN2 = SPAN(K)	14700
		RISE2 = RISE(K)	14750
		HW2 = WHW	14800
		DC(2) = DSUBC	14850
С			14900
С		INLET CONTROL VELOCITY CALCULATIONS	14950

```
15000
С
           = 2
                                                                                15050
      I
  510 IF ( NSW1 )540,520,540
                                                                                15100
  520 TEMP = QADJ + CN(I3) / 1.486 / SLOPE++0.5
DEP = 0.9 + FRISE
                                                                                15150
                                                                                15200
                                                                                15250
      NSW10 = -1
      GO TO 700
                                                                                15300
  530 IF ( DEP - FRISE )580,570,570
                                                                                15350
                                                                                15400
С
      OUTLET CONTROL VELOCITY CALCULATIONS
                                                                                15450
С
                                                                                15500
С
  540 IF ( WTW - FRISE )541,570,570
                                                                                15550
  541 IF ( DC(I) - FRISE )542,570,570
                                                                                15600
                                                                                15650
  542 IF ( DC(I) - WTW )543,550,550
  543 DEP = WTW
                                                                                15700
      GO TO 560
                                                                                15750
                                                                                15800
  550 DEP
            = DC(I)
  560 \text{ NSW13} = -1
                                                                                15850
                                                                                15900
      NSW14 = 4
                                                                                15950
      GO TO 1100
                                                                                16000
  570 AREA = TOAR(K)
                                                                                16050
  580 VEL1 = QADJ / AREA
      IF { I - 1 )610,610,581
                                                                                16100
  581 VEL2 = VEL1
                                                                                16150
            = I ~ 1
                                                                                16200
      I
      NSW12 = 5
                                                                                16250
  590 IF 1 SPAN2 - SPAN1 )170,160,160
                                                                                16300
                                                                                16350
C
                                                                                16400
С
         PRINT AND CONTROL ROUTINE
                                                                                16450
С
  610 IF ( NSW7 )355,620,630
                                                                                16500
                                                                                16550
  620 CALL WR9
                                                                                16600
  630 CALL WR10
                                                                                16650
      GO TO ( 640,690,695,20 ),NSW8
                                                                                16700
С
                                                                                16750
С
       SET CONTROLS FOR INLET CONTROL CHECK CALCULATIONS
                                                                                16800
С
                                                                                16850
  640 01
             = QADJ
                                                                                16900
      QADJ = Q2 / PIPES
                                                                                16950
      NSW2 = 2
                                                                                17000
      NSW9 = 0
                                                                                17050
       GO TO 100
                                                                                17100
С
       STORE RESULTS FOR FIRST SET OF CHECK CALCULATIONS
                                                                                17150
C
                                                                                17200
C
                                                                                17250
  650 HW1
           = WHW
                                                                                17300
      DC(1) = DSUBC
                                                                                17350
      NSW12 = 3
                                                                                17400
       IF ( SPAN2 - SPAN1 )160,170,170
  660 \text{ NSW2} = 3
                                                                                17450
```

- 32 -

		IF { NSW9 }680,670,680	17500
	670	NSW7 = 1	17550
		NSW8 = 2	17600
		GO TO 100	17650
4	680	NSW8 = 4	17700
		GO TO 220	17750
с			17800
č		SET CONTROLS FOR OUTLET CONTROL CALCULATIONS	17850
č			17900
- -	690	CALL WRII	17950
		NSH8 = 3	18000
		$0^2 = 0$	18050
		$AD_{ij} = 0$	18100
		G0 10 200	18150
С			18200
ř		SET CONTROLS FOR OUTLET CONTROL CHECK CALCULATIONS	18250
č			18300
C	695	OADI = CO / PIPES	19350
			19400
			19450
			19500
			10500
			10000
~		60 10 220	10000
ç		TTERATIVE BOUTTHE USED FOR CALOURATING	18030
č		COLLICE ROUTINE USED FUR CALCULATING	18700
C C		CRITICAL DEPTH, DSUBC; AND NURMAL DEPTH, DSUBN	18750
Ç	700		18800
	100	$UECKM = U_2 + FKISE$	18850
	305	IF (NSWID)/05,/06,/05	18900
	105		18950
			19000
	706	NSWI3 = 1	19050
	101	NSW14 = 1	19100
		KOUNT = 0	19150
		GU TU LICO	19200
	/10	IF (NSW10) 740, 711, 740	19250
	/11	TEMP = AREA + AREA + AKEA / T	19300
		IF (TEMP - 020VG) /20,750,730	19350
	720	IF (KOUNT) 721,750,721	19400
	721	IF (DECRM - 0.03)760,760,722	19450
	722	DEP = DEP + DECRM	19500
		DECRM = 0.2 + DECRM	19550
	730	DEP = DEP - DECRM	19600
		KOUNT = KOUNT + 1	19650
		GO TO 11CO	19700
	740	AUVWP = AREA + 1.66667 / WP + 0.666667	19750
		IF (ADVWP - TEMP)720,760,730	19800
	750	DEP = FRISE	19850
	760	IF (NSW10)530,230,240	19900
С			19950

- 33 -

-			
С		PIPE-ARCH SELECTION ROUTINE	20000
С			20050
	800	DO 840 K =1,61	20100
		IF (TDAR(K) - AREA)840,850,850	20150
	840	CONTINUE	20200
		GO TO 80	20250
	850	FSPAN=SPAN(K)/12.0	20300
		FRISE = RISE(K) / 12.0	20350
		IF (FRISE - AHW - 0.5)854.854.180	20400
	854	IF(K-11) 855-855-870	20450
	855	IF (II3 - 1)856.856.860	20500
	856	13 = 3	20550
	020	0 10 890 D	20600
	860		20650
	000		20050
	970	GU 10 570 16 / 112 - 1 1971 971 990	20700
	070		20750
	011		20800
			20850
	880		20900
	890	GU 1U 1 895,220,860,70,510,695 7,NSWI2	20950
_	895	IF { NSWI }220,100,220	21000
C			21050
С		ROUTINE FOR CALCULATING AREA,WETTED PERIMETER, AND TOP SURFACE	21100
С		WIDTH OF WATER FOR ANY DEPTH OF FLOW IN PIPE-ARCH CULVERTS	21150
С			21200
1	100	Y3=DEP +12.0	21250
		SPHI1 = (SPAN(K)/2CR(K))/(8R(K)-CR(K))	21300
		TPH12={SPAN(K)/2CR(K))/(BDIS(K)-(RISE(K)-TR(K)))	21350
		PHI1=ATAN(SPHI1/SQRT(1-SPHI1+SPHI1))	21400
		PHI2=ATAN(TPHI2)	21450
		Y1 = BR(K) - BR(K) + COS(PH(1))	21500
		Y2 = BDIS(K) + CR(K) + COS(PHI2)	21550
		AREA3=0.	21600
			21650
			21700
			21750
			21800
			21850
			21000
			21900
			21900
			22000
		$\frac{A \times L - L \circ / 1 D \times (N / V O \times N / J)}{D \times D \times$	22000
			22100
		DZ = Z = D U I J K J	22150
		AZ = UK[K] + UK[K] + UU[S[K] + UU[S[K]	22200
		$ARZ=1 \circ / UKIR J = +2$	22220
		KAU2=54K1182=82-[4=A2=(-1.)]	22300
		$B_3=2+1R_1SE(R_1+1R_1(R_1))$	22350
		A3=Z*RLSE(K)+TR(K)-RISE(K)*RISE(K)	22400
		AK3=1•/TR(K)++2	22450

-	RAD3=SQRT(B3+B3-(4+A3+(-1.)))	22500
	IF(Y3.GT.Y2.OR.Y3.EQ.Y2)GO TO 325	22550
	¥2=¥3	22600
	IF(Y3.GT.Y1.OR.Y3.EQ.Y1)GO TO 345	22650
	Y1=Y3	22700
	IF(Y3.GT.0.0)GO TO 367	22750
325	X3=ABS{A3+B3+Y3-Y3+Y3)	22800
	X33=A3+B3+Y2-Y2+Y2	22850
330	CALL MARQUE(3, Y3, Y2, B3, X3, X33, AK3, RAD3)	22900
	AREA3=(ASUB1-ASUB2)/144.0+2.	22950
	WP3 = 2.*TR(K)*(XX1-XX2)	23000
345	X2=A2+B2+Y2-Y2+Y2	23050
	X22=A2+B2+Y1-Y1+Y1	23100
	CALL MARQUE(2, Y2, Y1, B2, X2, X22, AK2, RAD2)	23150
· •	ASUB3 = {SPAN(K)/2CR(K))+ Y2-(SPAN(K)/2CR(K))+Y1	23200
	AREA2= (ASUB1-ASUB2+ASUB3)/144.0+2.0	23250
	WP2 = 2.+CR(K)+(XX1-XX2)	23300
367	X1=B1+Y1-Y1+Y1	23350
	CALL MARQUE(1, Y1, 0., 81, X1, 0., AK1, RAD1)	23400
	AREA1=(ASUB1-ASUB2)/144.0+2.	23450
	WP1 = 2. +BR(K) + (XX1 - XX2)	23500
	AREA=AREA1+AREA2+AREA3	23550
	WP ={WP1+WP2+WP3)/12.0	23600
	IF(Y3.GT.Y2) GO TO 110	23650
	[F(Y3.GT.Y1) GO TO 13	23700
	IF(Y3.GT.0.0) GD TO 15	23750
110	TOP=2+SQRT(X3)	23800
	GO TO 19	23850
13	TOP=2+(SQRT {X2}+(SPAN(K)/2CR(K)))	23900
	GO TO 19	23950
15	TOP=2+SQRT(X1)	24000
19	T=T0P/12.0	24050
1130	GO TO (710,221,430,580),NSW14	24100
	END	24150

	SUBROUTINE H18021	00000
	COMMON ASUB1,ASUB2,ASUB3,XX1,XX2	00050
	COMMON I1, 12, 13, 14, 15, SLOPE, DIST, Q1, AHW, DTW, Q2, CTW, QADJ, PIPES, 1H	00100
1	80), SPANK, RISEK, WHW, SPANI, RISE1, HW1, VEL1, SPAN2, RISE2, HW2, VEL2	00150
	2,NT,K,K1,K2,INVAL,Y,T,Q2OVG,FRISE,TEMP,DEP,DECRM,AREA	00200
	INTEGER SYSIN	00250
	DIMENSION KT(6)	00300
	DATA SYSIN/1/,KT/2211,3222,2233,2111,3122,2133/	00350
		00400
	READ IDENTIFICATION CARD AND INPUT DATA CARD	00450
		00500
20	READ(SYSIN, 902) IH, II, I2, I3, I4, I5, SLOPE, DIST, Q1, AHW, DTW, Q2, CTW	00550
	IF (II .EQ. 0) STOP	00600
	CALL H18023	00650
	IF (AHW)34,34,33	00700
33	HEIT = DIST + SLOPE + AHW - 0.5	00750
	IF (DTW - HEIT)40,34,34	00800
34	CALL WRI	00850
	GO TO 20	00900
40	SLOPE = SLOPE + 0.000001	00950
	1F (11 - 3)47,43,47	01000
43	KODE = 12*1000 + I3*100 + I4*10 + I5	01050
	DO 46 I =1,6	01100
	IF (KODE - KT(I))46,50,46	01150
46	CONTINUE	01200
47	CALL WR2	01250
	GO TO 20	01300
50	RETURN	01350
902	FORMAT (80A1 / 511,F7.4,6F7.1)	01400
	END	01450

- 36 -

C C C

	SUBROUTINE H1802	3	00000
	COMMON ASUB1, ASU	32.ASUB3.XX1.XX2	00050
	COMMON 11+12-13,	14.15, SLOPE, DIST, Q1, AHW, DTW, Q2, CTW, QADJ, PIPES, IH	00100
	1 801 . SPANK . R	ISEK, WHW, SPAN1, RISE1, HW1, VEL1, SPAN2, RISE2, HW2, VEL2	00150
	2.NT.K.K1.K2.TNVA	.Y.T.Q20VG.FRISE.TENP.DEP.DECRN.ARFA	00200
	INTEGER SYSOT		00250
	DATA SYSOT/3/		00300
	WRITE(SYSOT.902)	IN	00350
	WRITE(SYSOT, 905)	11.12.13.14.15.SLOPE.DIST.01.ANH.DTW.02.CTH	00400
	RETURN		00400
	ENTRY WRI		00500
	WRITELSYSOT, 906)		00550
	PETIION		00500
	ENTRY WR2		00600
	WRITEISVSOT 0151		00000
	DETIDN		00700
	CNTON WD3		00750
	UDITERSYSOT 007)		00800
	MATIE(SISUI 9901)		00850
	CNTON UDZ		00900
	LUTTEISYSOT 000)		00950
	#KIIE13120119001		01000
	RETURN HDE		01050
	ENIKY WKO	0101 01055	01100
	WRITEISTSUI,917)	VAUJIPIPES	01150
			01200
	ENIKY WKO	0404 07055 5040W 0755W	01250
	WRITE(SYSU1,909)	VAUJ; PIPES; SPANK; KISEK	01300
	RETURN		01350
	ENTRY WR7		01400
	WRITEISYSUT, 913)	QADJ, PIPES, SPANK, RISEK, WHW, VEL1	01450
	RETURN		01500
	ENTRY WR8		01550
	WRITE(SYSUT,913)	QADJ,PIPES,SPAN1,RISE1,HW1,VEL1	01600
	RETURN		01650
	ENTRY WR9		01700
	WRITE(SYSOT, 910)		01750
	WRITE(SYSOT,912)		01800
	RETURN		01850
	ENTRY WRIO		01900
	WRITE(SYSOT,913)	QADJ,PIPES,SPAN2,RISE2,HW2,VEL2,QADJ,PIPES,SPAN1,	01950
	1	RISE1, HW1, VEL1	02000
	RETURN		02050
	ENTRY WR11		02100
	WRITEISYSDT,911)		02150
	WRITE(SYSOT, 912)		02200
	RETURN		02250
			02300
	OUTPUT FORM	415	02350
			02400
9 02	FURMAT I 1H1,60A	[]	02450

C C C

		- 38 -	
905 FORMAT	1	14HO INPUT DATA / 6X, 5HCODE , 8H SLOPE , 8H LENGTH, 5X,	02500
1		2HQ1,5X,5HAHW ,5H DTW,6X,2HQ2,5X,3HCTW /	02550
2		5X,5I1,F8.4,2F9.1,2F7.1,F9.1,F7.1)	02600
906 FORMAT	- (34HO ALLOWABLE HEADWATER TOO SMALL)	02650
907 FORMAT	l	32HO NUMBER OF PIPES EXCEEDS SIX)	02700
908 FORMAT	ť	33HO ALLOWABLE HEADWATER TOO HIGH)	02750
909 FORMAT	1	F13.1, 3F12.1, 26H INLET CONTROL GOVERNS)	02800
910 FORMAT	1	25HO INLET CONTROL RESULTS)	02850
911 FORMAT	ł	26HO OUTLET CONTROL RESULTS)	02900
912 FORMAT	ſ	6X,9HDISCHARGE,4X,9HNUMBER OF,5X,4HSPAN, 8X,4HRISE,6X,	02950
1		9HHEADWATER, 3X, 8HVELOCITY / 9X, 3HCFS, 9X, 5HPIPES, 6X,	03000
2		6HINCHES,6X,6HINCHES,7X,4HFEET, 8X,3HFPS)	03050
913 FORMAT	ſ	F13.1,5F12.1)	03100
914 FORMAT	1	3F10.3,10X,F10.3)	03150
915 FORMAT	1	25H0 CULVERT CODE INVALID)	03200
917 FORMAT	ſ	2F13.1,8X,24HAVAILABLE SIZES EXCEEDED /// 12X,9HSEE NEXT	03250
1		,14HSET OF ANSWERS)	03300
END			03350

•

	SUBROUTINE MARQUE(ICODE,UL,LL,BB,UX,LX, AK,RAD)	00000
	COMMON ASUB1,ASUB2,ASUB3,XX1,XX2	00050
	COMMON I1, I2, I3, I4, I5, SLOPE, DIST, Q1, AHW, DTW, Q2, CTW, QADJ, PIPES, IHI	00100
1	60), SPANK, RISEK, WHW, SPAN1, RISE1, HW1, VEL1, SPAN2, RISE2, HW2, VEL2	00150
2	2,NT,K,K1,K2,INVAL,Y,T,Q2OVG,FRISE,TEMP,DEP,DECRM,AREA	00200
	REAL LL,LX	00250
	XX1 = (2.0UL-BB)/RAD	00300
	IF(XX1.GT.1.0) XX1=1.0	00350
	XX1 = ASIN(XX1)	00400
	ASUB1=(((-2+UL+BB)+SQRT(UX))+(25))+1./(2+AK)+XX1	00450
	XX2= ASIN((2.+LL-BB)/RAD)	00500
	ASUB2={{{{-2}+LL+BB}+SQRT{LX}}+{25}}+1./{2+Ak}+XX2	00550
100	RETURN	00600
	END	00650

.

* See back of the input data form

ŧ •

PROBLEM 1

INPUT DATA CODE SLOPE LENGTH 01 AHW DTW 02 CTW 32133 .0250 150.0 150.0 6.0 .0 190.0 .0 INLET CONTROL RESULTS SPAN NUMBER OF RISE HEADWATER VELOCITY DISCHARGE CFS PIPES INCHES INCHES FPS FEET 150.0 65.0 40.0 6.5 1.0 10.5 150.0 1.0 72.2 44.4 11.8 5.2 190.0 1.0 65.0 40.0 9.1 13.4 190.0 1.0 72.2 44.4 6.9 12.0 OUTLET CONTROL RESULTS NUMBER OF SPAN RISE VELOCITY DISCHARGE HEADWATER CFS PIPES INCHES INCHES FEET FPS 72.2 150.0 1.0 44.4 INLET CONTROL GOVERNS 1.0 65.0 40.0 11.2 150.0 6.3 44.4 190.0 1.0 72.2 INLET CONTROL GOVERNS 190.0 1.0 65.0 40.0 10.6 13.7

PROJ 1-40-25 STA 4635 CM PIPE-ARCH RCT 4/05/63

Comments: Results for both inlet control and outlet control show the same pipe sizes and number of pipes required. This is not always the case because both the sizes and number of pipes can be different for the two types of control (see Problem 3).

> For inlet control a 72.2" x 44.4" (72" x 44" nominal) is required to keep the headwater below the AHW of 6.0 ft. The message for outlet control reads "Inlet Control Governs" indicating normal depth is less than critical depth and inlet control governs. Note that tailwater equals zero, indicating a drop off at the end of the culvert.

All sizes selected are of the riveted arch type.

* See back of the input data form

15-

PROBLEM 2

INPUT DATA CODE SLOP 32133 •002	PE LENGTH 20 120.0	Q1 400.0	AHW 6.0	DTW 4.0	Q2 500.0	CTW 5.0	,
INLET CONTROL DISCHARGE CFS 200.0 200.0 250.0 250.0	RESULTS NUMBER OF PIPES 2.0 2.0 2.0 2.0 2.0	SPAN INCHES 73.0 76.0 73.0 76.0		RISE INCHES 55.0 57.1 55.0 57.1	HEADW/ FEE1 6.2 5.9 8.0 7.4	ATER 2))	VELOCITY FPS 9.1 8.3 11.3 10.4
OUTLET CONTRO DISCHARGE CFS 200.0 200.0 250.0 250.0	L RESULTS NUMBER OF PIPES 2.0 2.0 2.0 2.0 2.0	SPAN Inches 95.2 92.4 95.2 92.4		R I SE INCHES 67.2 65.0 67.2 65.0	HEADWA FEE1 5.9 6.1 7.4 7.9	TER	VELOCITY FPS 7.1 7.4 7.4 7.4 7.8

PROJ I-98-888 STA 86619.5 CM PIPE-ARCH 4/05/63

Comments: In this problem two pipes are needed, each assumed to carry onehalf the discharge. No size selected is common to both the inlet and outlet control results.

> Comparing headwater values with the AHW of 6.0 ft. the 95.2"x67.2"(7'-ll"x5'-7" nominal) arch under outlet control must be selected since smaller pipes are adequate if flowing with inlet control. This is, therefore, an outlet control design.

This problem uses the same input data as Problem No. 4 appearing in BPR HY-1.

All sizes selected are structural plate arches with 18" corner radii.

.

Front of input data form

* See back of the input data form

- 45 -

PROBLEM 3

SAMPLE	PROBLEM	NUMBER 3						
INPUT DAT	ſA							
CODE	SLOPE	LENGTH	Q1	AHW	DTW	Q2	CTW	
32111	.0100	250.0	2000.0	13.0	8.0	2300.0	10.0	
INLET CO	ONTROL	RESULTS						
DISCH	ARGE	NUMBER OF	SPAN		RISE	HEADW	ATER	VELOCITY
CFS	S	PIPES	INCHES		INCHES	FEE	г	FPS
2000.	0	1.0	238.6		154.7	12.9)	12.8
2000.	0	1.0	236.4		152.5	13.1	L	12.7
2300.	0	1.0	238.6		154.7	14.9	5	12.9
2300.	0	1.0	236.4		152.5	14.7	7	12.8
OUTLET (CONTROL	RESULTS						
DISCH	ARGE	NUMBER OF	SPAN		RISE	HEADW	ATER	VELOCITY
CFS	S	PIPES	INCHES		INCHES	FEE	r	FPS
2000.0	0	1.0	AVAI	LABLE	SIZES EX	CEEDED		

SEE NEXT SET OF ANSWERS

1

Comments: Outlet control governs in this problem due to the large design discharge and relatively flat slope. Rather than present results that reflect fewer culvert barrels for inlet control than for outlet control, an outlet control message "Available Sizes Exceeded" indicates that a greater number of barrels would be required for outlet control. The number of barrels selected for inlet control, one in this problem, is increased by one. Then inlet and outlet control results are computed as illustrated by this problem on the following page.

Problem 3 (continued)

1	SAMPLE	PROBLEM	NUMBER	3	
---	--------	---------	--------	---	--

INPUT DA1	ΓA								
CODE	SLOPE	LENGTH	Ql	AHW	DTW	Q2	CTW		
32111	.0100	250.0	2000.0	13.0	8.0	2300.0	10.0		
INLET CO	ONTROL R	ESULTS							
DISCH	ARGE	NUMBER OF	SPAN		RISE	HEADW	ATER	VELOCITY	
CFS	S .	PIPES	INCHE	S	INCHES	FEE	T	FPS	
1000.	0	2.0	152.4		97.4	19 7	,	10.0	
1000.	0	2.0	150.2		95.2	12 9	,	12.3	
1150.0	0	2.0	152.4		97.4	15 0	•	14.9	
1150.0	0	2.0	150.2		95.2	- 15 0		14.1	
					<i>))</i>	1).5	ſ	14.0	
OUTLET C	CONTROL	RESULTS							
DISCHA	ARGE	NUMBER OF	SPAN		RISE	HEADW	ATER	VELOCITY	
CFS	5	PIPES	INCHE	Ş	INCHES	FEE	Г	FPS	
1000.0	0	2.0	167.2		103.0	12.8		11.1	
1000.0	0	2.0	160.8		101.3	13.6		11.5	
1150.0	5	2.0	167.2		103.0	17.2		12.4	
1150.0	2	2.0	160.8		101.3	18.2		13.0	
					-				

Comments: It was noted on the previous page that a single barrel culvert was inadequate for outlet control; hence, the message "Available Sizes Exceeded." The above data illustrates inlet and outlet control results for two barrels.

All sizes selected are structural plate arches with 18" corner radii.

Front of input data form

		C	:AJ	RI)]	NO	•	1]																																											_
	1 2	2	3	4	5	6	7	8	9	10	Ţ	Ţ	21	3	14	15	16	17	18	19	2	0 21	1/2:	2 2	32	42	s	26	27	28	29	30	3	13:	2 3:	3 34	13	530	3	13	83	7 41	0 4	14	2	43	44	45	46	Ø	48	49	50	
	1 SAMPLE PROBLEM USING 31" CORNER RADIUS PIPE ARCH																																																					
ſ	PROBLEM IDENTIFICATION																																																					

See back of the input data form

۰.,

- 47 -

PROBLEM

SAMPLE PROBLEM USING 31" CORNER RADIUS PIPE-ARCH

INPUT DATA CODE 32111	SLOPE	LENGTH 250.0	01 1250.0	AHW 13.0	DTW 8.0	Q2 1350.0	CTW 10.0
INLET CONT	ROL RES	ULTS					
DISCHARG	Е	NUMBER OF	SPAN		RISE	HEADWATER	VELOCITY
CFS		PIPES	INCHES		INCHES	FEET	FPS
1250.0		1.0	167.6		116.2	13.0	11.8
1250.0		1.0	162.2		114.4	13.6	12.3
1350.0		1.0	167.6		116.2	14.1	12.7
1350.0		1.0	162.2		114.4	14.8	13.2
OUTLET CON	TROL RE	SULTS					
DISCHARG	E	NUMBER OF	SPAN		RISE	HEADWATER	VELOCITY
CFS		PIPES	INCHES		INCHES	FEET	FPS
1250.0		1.0	195.4		130.2	13.0	11.0
1250.0		1.0	189.6		128.5	13.3	11.2
1350.0		1.0	195.4		130.2	15.0	10.1
1350.0		1.0	189.6		128.5	15.4	10.3

Comments: Outlet control governs since a 195.4" x 130.2" is required as shown, while only a 167.6" x 116.2" for inlet control.

All sizes selected are structural plate arches with 31" corner radii.

- 48 -